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Most current methods for identifying coherent structures in spatially extended systems rely on prior infor-
mation about the form which those structures take. Here we present two approaches to automatically filter the
changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity
filtering, is a modification of the local Lyapunov exponent approach suitable to cellular automata and other
discrete spatial systems. The other, local statistical complexity filtering, calculates the amount of information
needed for optimal prediction of the system’s behavior in the vicinity of a given point. By examining the
changing spatiotemporal distributions of these quantities, we can find the coherent structures in a variety of
pattern-forming cellular automata, without needing to guess or postulate the form of that structure. We apply
both filters to elementary and cyclical cellular automata �ECA and CCA� and find that they readily identify
particles, domains, and other more complicated structures. We compare the results from ECA with earlier ones
based upon the theory of formal languages and the results from CCA with a more traditional approach based
on an order parameter and free energy. While sensitivity and statistical complexity are equally adept at
uncovering structure, they are based on different system properties �dynamical and probabilistic, respectively�
and provide complementary information.
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I. INTRODUCTION

Coherent structures are ubiquitous in nature, the result of
complex patterns of interaction between simple units �1,2�.
Such structures are not simply epiphenomena of the micro-
scopic physics, but instead often govern the system’s macro-
scopic properties, providing powerful collective degrees of
freedom—they make good “handles” on the system �3�. Con-
densed matter physics provides a host of equilibrium systems
in which this is true �4�—for instance in antiferromagnets �5�
and liquid crystals �6�—and the anomalous properties of the
high-temperature superconductors may be due, in part, to the
presence of ordered charge density waves �stripes� �7�. Co-
herent structures also govern the behavior of many nonequi-
librium systems �2�. The obvious examples are biological
systems which are rife with coherent structure and are most
certainly far from equilibrium �until they die� �8,9�. Another
example may be found in economics where the spatial pat-

tern of economic activity has been postulated to be governed
by the emergence of coherent structures in the form of cities
and hierarchies of urban centers �10�. It has even been pro-
posed that coherent structures can perform adaptive informa-
tion processing tasks and are therefore the typical physical
embodiment of emergent computation �11–15�. This conjec-
ture is supported by both simulations of biological morpho-
genesis �16� and experiments on the adaptive responses of
stomata in plants �17�. In view of the intrinsic scientific in-
terest of complex, spatially extended systems and the poten-
tial power of coherent structures to describe them concisely,
it is important to develop techniques which can uncover and
define coherent structures in both the equilibrium and non-
equilibrium cases. In this paper, we present two such filters,
applicable to spatially extended discrete systems.

Most existing methods for identifying coherent structures
rely on knowing some details about the structure one is look-
ing for. Matched filters are designed so that signals of certain
known character maximize the response �18�. Such filters
may match either the structures themselves �e.g., �19�� or the
uninteresting details of the background in which the struc-
tures are embedded �e.g., �20,21��. The latter technique has
been particularly useful in equilibrium systems with broken
symmetry. The identification of an appropriate order param-
eter and an associated free energy implicitly defines a filter
which matches the background—i.e., the ordered state. De-
partures from the ordered state, such as domain walls, vorti-
ces, and other topological defects, constitute mesoscopic
structure. While extremely successful, this method requires a
lot of trial and error and some knowledge of the underlying
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microdynamics. In far-from-equilibrium systems, much of
the progress in detecting coherent structures has involved the
application of regular language theory �22� to one-
dimensional �1D� deterministic cellular automata �23–26�.
Specific filters, adapted to particular cellular automata rules,
have been designed to detect structures dynamically �27–31�.
In these cases as well, however, one must know a lot about
the system’s dynamics to work out, by hand, a suitable filter.
Furthermore, to apply such notions to cellular automata of
higher dimension, one would have to extend regular lan-
guage theory to such dimensions, which presents significant
difficulties �32�. Extensions to stochastic systems would be
even more problematic.

The two filters introduced in this paper address these
issues.1 Both are “automatic” filters, in that they require no
prior information about the system’s microscopic dynamics
or the structures generated. They can be applied to both equi-
librium and nonequilibrium systems of, in principle, any di-
mensionality. One of them is applicable to systems with sto-
chastic dynamics. The two filters are, however, based upon
very different system properties. Section II introduces the
local sensitivity, an adaptation of Lyapunov exponents to cel-
lular automata, measuring the degree to which small pertur-
bations can alter the dynamics. Section III defines the local
statistical complexity, which measures the spatiotemporal
distribution of the amount of information needed to opti-
mally predict the system’s dynamics. It is therefore a proba-
bilistic measure, completely compatible with any underlying
stochastic dynamics. Both methods identify coherent struc-
tures by filtering the system’s changing configuration with
respect to sensitivity �or complexity� and tracking the chang-
ing spatial distributions of these fields. We apply each filter
to the task of detecting coherent structures in cellular au-
tomata. Sections II B and III C look at “elementary” �one-
dimensional, binary, range-1� cellular automata �ECA�,
where we find that both filters readily identify ECA particles,
domains, and domain walls, although they emphasize these
structures to differing degrees. In Sec. IV we use cyclic cel-
lular automata �CCA�, a self-organizing model of excitable
media, to compare the local sensitivity and statistical com-
plexity with a more traditional order parameter approach.
�We identify the appropriate order parameter for this system
in Sec. IV A.� Our conclusion gives a summary and dis-

cusses some open questions. Finally, the Appendixes discuss
previous attempts to adapt the Lyapunov exponent to cellular
automata �Appendix A� and provide details on the construc-
tion of the CCA order parameter and effective free energy
�Appendix B�.

II. LOCAL SENSITIVITY

The first of our filters for coherent structures is based
upon a measure of local sensitivity: the instability of the
discrete cellular automata field under local perturbation. Fil-
tering with respect to local sensitivity is motivated by a de-
sire to distinguish autonomous objects from the rest of the
CA’s configuration field. By “autonomous objects” we mean
those structures that have the greatest influence upon the fu-
ture dynamics of the system. Perturbing an autonomous ob-
ject will affect the future a great deal. In contrast, perturba-
tions of the rest of the system, the dependent parts, should be
quickly overridden and “healed” by the autonomous dynam-
ics. The set of autonomous objects constitutes a high-level
model of the system, and knowledge of them should allow us
to infer most of the rest of the dynamics, as well as the
objects’ own futures.

A famous example of a system governed by autonomous
objects is rule 110 of elementary cellular automata. This is a
nonconservative, nearest-neighbor, binary rule, whose con-
figuration field �Fig. 1� tends to exhibit background domains
with long spatial and temporal periods and large-scale par-
ticles. Knowledge of the position of these particles carries
considerable predictive power �25,33�. A second example
may be found in the cyclic cellular automata �see below, Sec.
IV�. For certain parameter values the CCA configuration
field evolves into competing spiral waves, the cores of which
are autonomous �see Fig. 2�.

For these two examples—rule 110 and spiral CCA—the
presence of structure is obvious. However this is not always
the case �see, e.g., Ref. �30� and the discussion of rule 146 in
Sec. II B below�. Even when it is, reliably identifying all the
structure present in a CA’s configuration field is difficult to
do by eye and it is often not at all clear how autonomous
such structures are. One might therefore hope for an auto-
matic filter capable of not only distinguishing particles, do-
mains, and extended objects like strings and domain walls in
large spatiotemporal systems, but also inferring their degree
of autonomy.

1Open-source code, in the objective CAML language, is available
from http://www.cscs.umich/afics/.

FIG. 1. �Color online� Typical space-time dia-
gram of rule 110; time advances from left to
right. Note the presence of the regular back-
ground domain and the particles which stand out
in the background by contrast.
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A. Defining local sensitivity

Since we want to filter cellular automata with respect to
autonomy, a natural point of departure is some mathematical
formalization of the idea that a system’s future may be very
sensitive to details of its present state. Devaney’s definition
of chaos �34� and the notions of topological and metric
�Kolmogorov-Sinai� entropy rates �35� are two ways in
which this intuition can be formalized. Here, however, we
will begin with the idea of a dynamical system’s Lyapunov
exponents, since these provide a more refined and quantita-
tive measure of sensitivity dependence than either the mere
fact of chaos or than the metric entropy rate �which is gen-
erally the sum of the positive Lyapunov exponents�. We
briefly review the definition of Lyapunov exponents before
developing our filter.

A one-dimensional map f , for which the system’s state is
given by a single real variable x, has a single Lyapunov
exponent, given by the following limit:

� = lim
n→�

1

n
log�Dfn�x0�� ,

where D is the derivative operator. �The limit can be shown
to exist and be identical for almost all initial points x0.� The
interpretation is that, if one begins with two points x0 and
x0+�, the distance between their future images, after n time
steps, is approximately �en�; this relation becomes exact as
�→0. In the case of a dynamical system described by m state
variables, the Lyapunov exponents are defined as the m ei-
genvalues, �1 ,¼ ,�m, of the matrix

� = lim
n→�

�D†fn�x0�Dfn�x0��1/2n,

where D is again the derivative operator and A† denotes the
adjoint of A. These give the exponential growth rates of
small perturbations applied along different directions �which
are not, however, the eigenvectors of �, but those of Df�.
The spectrum of Lyapunov exponents thus gives a fairly de-
tailed picture of the kinds and degrees of sensitivity dis-
played by the system dynamics.

These definitions take no account of the system’s spatial
structure; this should be rectified in an application to cellular
automata. In addition, we must define the exponents in a way
which is spatially local, so that their variation over space can
be studied and structures identified. In continuous, spatially
extended systems the traditional approach has been to con-
sider the global configurations of the system as points in a
Hilbert space ��35�, p. 53� and then expand the above defi-
nition to include infinite-dimensional spaces. Although this
produces a meaningful set of global exponents, these expo-
nents contain no information about whether the system is
more sensitive at particular points in space. Such informa-
tion is crucial for identifying coherent structure. Also crucial
is an ability to identify structures at varying spatial scales.
For example the elementary CA rule 110 has particles that
can be over 20 cells wide—and all parts of the particle need
not be equally sensitive. Some more recent work has at-
tempted to define Lyapunov exponents in a spatially local
manner, for precisely these reasons �2�.

A second challenge is to define Lyapunov exponents in a

FIG. 2. �Color online� Phenomenology of the cyclic CA �defined
in Sec. IV� in one of its spiral-forming phases ��=4 colors, excita-
tion threshold T=2, rule radius r=1�. Time progresses from top to
bottom, the panels depicting �a� the random initial conditions, �b�
the formation of spiral wave cores, and �c� their eventual domina-
tion of the entire lattice.
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way which is applicable to systems which are discretized, in
both state and space. The classical definition of the Lyapunov
exponent invokes limits taken as two initial conditions ap-
proach arbitrarily close to one another in continuous-state
spaces. �This is implicit in the use of derivatives.� In cellular
automata, in which the state is discretized, the closest distinct
configurations possible are two configurations differing only
on one cell.2 Space is also discretized: there are no distances
intermediate between one and two cells. Several attempts
have been made to frame definitions of Lyapunov exponents
which accommodate these facts; we discuss these attempts
and why we feel they are not suitable for our present pur-
poses in Appendix A. Here we take the straightforward ap-
proach of perturbing small patches of contiguous cells,
evolving the system forward in time and measuring the dis-
tance between the perturbed and unperturbed configurations.
This eliminates the need to take derivatives, and by varying
the size of the perturbed region, one can examine the struc-
tures present at different length scales.

Formally, we define the local sensitivity at point r� , t0 as
the result of the following calculation. Let P be the set of all
cells at distance at most p from r�. The parameter p is called
the perturbation range. Let S be the set of all possible con-
figurations restricted to P �i.e., the set of words of length �P�
taking the states as alphabet�. For one s�S, we set the cells
in P to their state in s and keep the original configuration for
all other cells. Then we let the automaton evolve for f steps.
We name the parameter f the future depth. Finally, we mea-
sure the area of the difference plumes, the total number of
cells which differ from the original configuration, at each
time step and compute the mean, weighting the area at time
t by 1/ �w�, where w is the set of points at time t that depend
on �r� , t0�. �Figure 3 illustrates this calculation for rule 110.�
We average this over all s�S to get the sensitivity at that
point, ��r� , t0�, which, intuitively, gauges how unstable the
system is with respect to perturbations there. Note that � is
normalized so that it always lies between 0 and 1, facilitating
the comparison of distinct rules.

Two parameters enter into our calculation of �, though we
suppress them in the notation: the perturbation range p and
the future depth f . Both must be chosen with some care. If
they are too small, the calculated � is excessively sensitive to
fluctuations inside the background domain or within par-
ticles, but overly large parameter choices tend to make things
blurry and are quite time consuming. Choosing the right p is
like adjusting a microscope to the size of the object one
wants to observe. If the magnification factor is too high, one
might miss the bigger structures or even encounter diffrac-
tion artifacts �counterpart of being too close to the discreti-
zation scale�. It may seem self-defeating that we should need
to know the size of the relevant structures to successfully use
an automatic filter. However, there may be structures at dif-
ferent scales and varying p allows one to filter these prefer-
entially. Similarly, the coherent structures of many systems
can be arranged in a causal hierarchy, where higher-level
objects drive lower-level ones, and this can be detected by
increasing the future depth f , which tends to pick out the
most autonomous features. �See the example of ECA rule
146 below, especially Fig. 7, obtained with f =30.� Note that
the levels of the spatial and causal hierarchies need not be
aligned with one another; i.e., the largest structures need not
be the most autonomous.

B. Results from elementary cellular automata

We now present the results of applying the dynamical
sensitivity filter to several �1+1�D elementary CA. In Fig. 4
we show the configuration field of rule 110 �a� and the field
filtered with respect to the sensitivity �b�. Figure 5 does the
same for rule 54, another nonconservative elementary rule
which tends to produce a background domain of alternating
triangles. The filtering automatically distinguishes the au-
tonomous features of the CA, in particular the particles’ evo-
lution through time. The autonomy of the particles is re-
flected by their dark tone. The domains, in contrast, are much
less autonomous and appear lighter. This makes intuitive
sense. Domains are large, ordered regions of the CA, and
their perturbation has little effect upon the dynamics, be-
cause any defects are either quickly healed or remain con-
fined. Particles in contrast are relatively complex and local-
ized objects which travel through the domains. Perturbing a
particle generally strongly changes the dynamics of the CA,
either through its destruction or via a significant alteration of
its attributes—location, internal phase, type of particle, etc.
�25�.

The utility of the local sensitivity filter can be seen by
comparing the raw configurations produced by rules 22 and
146 to their filtered fields �Figs. 6 and 7, respectively�. The
configuration fields of the two rules look very similar, both
appearing highly disordered. Once filtered, however, it is
clear that they are quite different. Rule 22 is chaotic, and all
points have roughly equal, and strong, influence on the future
of the system. All of this, along with the absence of autono-
mous objects, is plain from the sensitivity filter �Fig. 6�b��. In
contrast, rule 146 �Fig. 7� is composed of domains separated
by boundaries which wander over time. The domain walls
appear as light traces, indicating that they are less autono-

2There are metrics, such as the Cantor metric, in which CA con-
figurations can approach arbitrarily close, but they are inappropriate
for local studies, such as ours.

FIG. 3. Illustration of the calculation of local sensitivity in rule
110. Left: unperturbed evolution of a configuration for rule 110.
Here 0’s are shown as white cells and 1’s as black cells. Time
progresses upwards. Right: results of apply a perturbation of width
p=2, in this case the perturbed initial configuration s is 11001. Cells
which switched from 0 to 1 under the perturbation are colored dark
gray; cells which switched from 1 to 0 under the perturbation are
colored light gray. The evolution of the perturbation is tracked for-
ward for f time steps. For this perturbation, the area of the differ-
ence plumes �gray cells� is �1/ f�� 5

7 + 4
9

�. This is then averaged over
all radius-p perturbations to get the sensitivity �.
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mous than the domains they separate. The domain walls of
rule 146 are dependent objects because their motion is deter-
mined by the chaotic dynamics of the domains to either side
of them. This is a clear instance of the fact that while the
presence of an autonomous object implies the existence of
structures, the presence of structures does not necessarily
imply autonomy.

The local sensitivity is spatially uniform in linear CA
rules �those which are a sum �mod 2� on a subset of the
neighborhood�. This is because the Hamming distance be-
tween the original and perturbed configurations is indepen-
dent of the perturbed cell, which in turn is because the dif-
ference plume always has the same shape. As expected from
this argument, direct calculations of the sensitivity field on
additive rules such as ECA 60, 85, 90, 105, 150, and 170
produce perfectly uniform results. �We omit plots for reasons
of visual monotony.�

III. LOCAL STATISTICAL COMPLEXITY

Although the sensitivity is very effective at uncovering
structures, as well as telling us how stable those structures

are, it has a significant drawback. The CA configuration field
must be actively perturbed many times and the results com-
pared to the unperturbed case. Such a procedure is computa-
tionally intensive and often impossible to apply effectively to
experimental data. We now discuss the local statistical com-
plexity C�r� , t� �36–38�, the calculation of which only requires
observations, rather than active and repeated perturbations.
We shall see that the statistical complexity has other advan-
tages as well.

A. Local causal states and their complexity

Let x�r� , t� be an �n+1�D field, possibly stochastic, in
which interactions between different space-time points
propagate at speed c. As in �39�, define the past light cone of
the space-time point �r� , t� as all points which could influence
x�r� , t�—i.e., all points �q� ,u� where u� t and ��q� −r� � �	c�t
−u�. The future light cone of �r� , t� is the set of all points
which could be influenced by what happens at �r� , t�. l−�r� , t� is
the configuration of the field in the past light cone and l+�r� , t�
the field in the future light cone. The distribution of future

FIG. 4. �Color online� Evolution of rule 110
from a random initial condition �the same as that
shown in Fig. 1, repeated for convenience�: �a�
configuration field, �b� sensitivity field �calcu-
lated with p=1, f =10�, and �c� complexity field,
using light cones of depth 3. In �b� and �c�, higher
values of the field are denoted by darker points.
In �c�, the vertical grey band on the left is due to
the fact that we need a past to compute the causal
states. There are a lot of particles in the begin-
ning, which makes the background domain rather
unusual and complex, but it gradually bleaches.
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light cone configurations, given the configuration in the past,
is P�l+�l−�.

Any function 
 of l− defines a local statistic. It summa-
rizes the influence of all the space-time points which could
affect what happens at �r� , t�. Such local statistics should tell
us something about “what comes next,” which is l+. Infor-
mation theory lets us quantify how informative different sta-
tistics are and so guides our choice among them.

The information about variable x in variable y is

I�x;y� � �log2
P�x,y�

P�x�P�y�	 , �1�

where P�x ,y� is the joint probability, P�x� is the marginal

probability, and 
·� is the expectation �40�. The information a
statistic 
 conveys about the future is I�l+ ;
�l−��. A statistic
is sufficient if it is as informative as possible �40�, here if and
only if I�l+ ;
�l−��= I�l+ ; l−�. This is the same �40� as requir-
ing that P(l+�
�l−�)=P�l+�l−�. A sufficient statistic retains all
the predictive information in the data. Since we want optimal
prediction, we confine ourselves to sufficient statistics.

If we use a sufficient statistic 
 for prediction, we must
describe or encode it. Since 
�l−� is a function of l−, this
encoding takes I�
�l−� ; l−� bits. If knowing 
1 lets us com-
pute 
2, which is also sufficient, then 
2 is a more concise
summary and I�
1�l−� ; l−�� I�
2�l−� ; l−�. A minimal sufficient
statistic �40� can be computed from any other sufficient sta-
tistic. In the present context, the minimal sufficient statistic is

FIG. 5. �Color online� Evolu-
tion of rule 54 from a random ini-
tial condition: �a� configuration
field, �b� local sensitivity �p=1, f
=10�, and �c� statistical complex-
ity for rule 54 �light-cone depth of
3�. In �c�, note that the back-
ground domain is light �low com-
plexity�, the particles are grey, and
most of the collisions are darker
�highest complexity�. The tiny
particles that are merely phase
shifts in the periodic background
are made clear here, while they
are hard to identify by eye in the
configuration field �though mis-
alignment between that field and
your printer matrix can help�.
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essentially unique �as discussed below� and can be reached
through the following construction.

Take two past light-cone configurations l1
− and l2

−. Each
has some conditional distribution over future light-cone con-
figurations: P�l+�l1

−� and P�l+�l2
−�, respectively. The two past

configurations are equivalent, l1
−� l2

−, if those conditional dis-
tributions are equal. The set of configurations equivalent to l−

is �l−�. Our statistic is the function which maps past configu-
rations to their equivalence classes:

��l−� � �l−� = �:P�l+���� = P�l+�l−��� . �2�

Clearly, P(l+���l−�)=P�l+�l−� and so I�l+ ;��l−��= I�l+ ; l−�,
making � a sufficient statistic. The equivalence classes, the
values � can take, are the causal states �37,41–43�. Each
causal state is a set of specific past light cones, and all the
cones it contains are equivalent, predicting the same possible
futures with the same probabilities. Thus there is no advan-
tage to subdividing the causal states, which are the coarsest
set of predictively sufficient states.

For any sufficient statistic 
, P�l+�l−�=P(l+�
�l−�). So if

�l1

−�=
�l2
−�, then P�l+�l1

−�=P�l+�l2
−� and the two pasts belong

to the same causal state. Since we can get the causal state
from 
�l−�, we can use the latter to compute ��l−�. Thus, � is
minimal. Moreover, � is the unique minimal sufficient statis-
tic ��37�, Corollary 3�: any other just relabels the same states.

Because � is minimal, I���l−� ; l−�	 I�
�l−� ; l−�, for any
other sufficient statistic 
. Thus we can speak objectively
about the minimal amount of information needed to predict
the system, which is how much information about the past of
the system is relevant to predicting its own dynamics. This
quantity, I���l−� ; l−�, is a characteristic of the system and not
of any particular model. We define the local statistical com-
plexity as

C�r�,t� � I��„l−�r�,t�…;l−�r�,t�� . �3�

For a discrete field, C is also equal to H���l−��, the Shannon
entropy of the local causal state.3 C is the amount of infor-
mation required to describe the behavior at that point and
equals the logarithm of the effective number of causal
states—i.e., of different distributions for the future. Com-
plexity lies between disorder and order �41,44,45�, and C
=0 both when the field is completely disordered �all values
of x are independent� and completely ordered �x is constant�.

3The proof is as follows. I���l−� ; l−�=H���l−��−H���l−� � l−�, the
amount by which the uncertainty in ��l−� is reduced by knowing l−.
But for any discrete-valued function f , H�f�x��x�=0, because a
function is certain, given its argument. Hence I���l−� ; l−�=H���l−��.

FIG. 6. �Color online� The
evolution of rule 22 from a ran-
dom initial condition: �a� configu-
ration field, �b� local sensitivity
�calculated with p=1, f =10�, and
�c� statistical complexity. The
nearly uniform sensitivity field in
�b� reflects the chaotic nature of
the rule.
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C grows when the field’s dynamics become more flexible
and intricate, and more information is needed to describe the
behavior.

The local complexity field C�r� , t� is simply
−log Pr(s�r� , t�) where s�r� , t� is the local causal state at space-
time point �r� , t�. The local complexity is the number of bits
which would be required to encode the causal state at r� , t, if
we used the optimal �Shannon� coding scheme. Equivalently,
it is the number of bits of information about l−�r� , t� which are
used to determine the causal state.

It is appropriate, at this point, to take a step back and
consider what we are doing. Why should we use the light-
cone construction, as opposed to any other kind of localized
predictor? Indeed, why use localized statistics at all, rather
than global methods? Let us answer these in reverse order.
The use of local predictors is partly a matter of interest—in
studying coherent structures, we care essentially about spa-
tial organization, and so global approaches, which would
treat the system’s sequence of configurations as one giant
time series, simply do not tell us what we want to know. In
part, too, the local approach makes a virtue of necessity,
because global prediction quickly becomes impractical for
systems of any real size. The number of modes required by
methods attempting global prediction, like Karhunen-Loeve
decomposition, grows extensively with system volume
�46,47�. Global methods thus provide no advantage in terms
of compression or accuracy.

The use of light cones for the local predictors, first sug-
gested by �39�,4 rather than some other shape, is motivated
partly by physical considerations and partly the nice formal
features which follow from the shape, of which we will men-
tion three �37�.

�i� The light-cone causal states, while local statistics, do
not lose any global predictive power. To be precise, if we
specify the causal state at each point in a spatial region, that
array of states is itself a sufficient statistic for the future
configuration of the region, even if the region is the entire
lattice.

�ii� The light-cone states can be found by a recursive fil-
ter. To illustrate what this means, consider two space-time
points �r� , t� and �q� ,u� , u� t. The state at each point is deter-
mined by the configuration in its past light cone: s�r� , t�
=�(l−�r� , t�), s�q� ,u�=�(l−�q� ,u�). The recursive-filtration prop-
erty means that we can construct a function which will give
us s�q� ,u� as a function of s�r� , t�, plus the part of the past
light cone of �q� ,u� that is not visible from �r� , t�. Not only
does this greatly simplify state estimation, it opens up pow-
erful connections to the theory of two-dimensional automata
�32�.

�iii� The local causal states form a Markov random field,
once again allowing very powerful analytical techniques to

4Kolmogorov seems to have been the first to use light cones to
analyze spatial stochastic processes, calling them “causal sets” in a
model of crystallization �48�—see �49�.

FIG. 7. �Color online� The evolution of rule
146 from a random initial condition: �a� the con-
figuration field, �b� the sensitivity field �calcu-
lated using p=1 and f =30�, and �c� the complex-
ity field. Although the configuration field looks
very similar to that of rule 22 �Fig. 6�, this field is
not chaotic and has a domain structure. Local
sensitivity filtering �b� reveals the domain walls
as light �low sensitivity� traces bounded by
darker zones. The domain walls are not autono-
mous; their behavior is instead determined by
what happens inside the domains, hence their low
sensitivity. Note also the increase in sensitivity
when two walls are near: a small perturbation can
lead them to merge �or prevent them from doing
so�. Statistical complexity filtering �c� reveals the
domain walls as dark �high complexity� traces
composed of localized triangular regions. Be-
cause the domain walls require more predictive
information than the domains themselves, the sta-
tistical complexity is higher for the walls. The
dark vertical lines are finite-size effects and
should be ignored
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be employed which would not otherwise be available �50�.
In general, if we used some other shape than the light

cones, we would not retain any of these properties.

B. A Reconstruction algorithm

We now sketch an algorithm to recover the causal states
from data and so estimate C. �See Fig. 8 for the pseudocode,
Ref. �37� for details, and cf. �39�.� At each time t, list the
observed past and future light-cone configurations and put
the observed past configurations in some arbitrary order, li

−�.
�In practice, we must limit how far light cones extend into
the past or future.� For each past configuration li

−, estimate
Pt�l+�li

−�. We want to estimate the states, which ideally are
groups of past cones with the same conditional distribution
over future cone configurations. Not knowing the conditional
distributions a priori, we must estimate them from data, and
with finitely many samples, such estimates always have
some error. Thus, we approximate the true causal states by
clusters of past light cones with similar distributions over
future light cones; the conditional distribution for a cluster is
the weighted mean of those of its constituent past cones.
Start by assigning the first past l1

− to the first cluster. There-
after, for each li

−, go down the list of existing clusters and
check whether Pt�l+�li

−� differs significantly from each clus-
ter’s distribution, as determined by a fixed-size �2 test. �We
used =0.05 in all our calculations.� If the discrepancy is
insignificant, add li

− to the first matching cluster, updating the
latter’s distribution. Make a new cluster if li

− does not match
any existing cluster. Continue until every li

− is assigned to
some cluster. The clusters are then the estimated causal states
at time t. Finally, obtain the probabilities of the different
causal states from the empirical probabilities of their con-
stituent past configurations and calculate C�r�t�. This proce-
dure converges on the correct causal states as it gets more
data, independent of the order of presentation of the past
light cones, the ordering of the clusters, or the size  of the
significance test �37�. For finite data, the order of presenta-
tion matters, but we finesse this by randomizing the order.

C. Results on elementary cellular automata

In Sec. II B, we demonstrated the ability of local sensitiv-
ity filtering to find coherent structures in elementary cellular

automata. Here we apply local statistical complexity filtering
to the same cellular automata and compare the results of the
two procedures.

Figures 4�c� and 5�c� show the local complexity fields
C�r� , t� of two of the classic rules 110 and 54, respectively.
Particles stand out clearly and distinctly on clean back-
grounds. Note that we achieve this result by applying the
same filter to both systems, even though their background
domains and particles are completely different. Were one to
use, say, the conventional regular-language filter constructed
in �31� for rule 54 on rule 110, it would produce nonsense.
�Reference �25� discusses the domains, particles, and con-
ventional filters of both these rules.� Note that the filter in
�31� is handcrafted, based on a detailed understanding of the
CA’s dynamics, whereas our filter, as we have said, is com-
pletely automatic and requires no human intervention. One
might expect this generality to be paid for in a loss of resolv-
ing power or missing system-specific features, but this does
not appear to be the case.5 For instance, the regular-language
analysis of rule 54 �31� identifies a subtle kind of particle,
which consists of a phase shift in the spatially periodic back-
ground domain. These phase shifts are hard to identify by
eye, but show up very cleanly as particles in Fig. 5�c�.

For completeness and further comparison with the local
sensitivity, we include rules 22 and 146 filtered with respect
with statistical complexity in Figs. 6�c� and 7�c�. Statistical
complexity is also able to distinguish between the two CA
configuration fields, even though the difference is not readily
apparent to the naked eye.

Experimentally, we find that the depth of the past light
cone is more relevant to proper filtering than the depth of the
future light cone. �This may be related to the recursive esti-
mation property of the causal states.� On elementary cellular
automata, depth 2 is often sufficient, in the sense that further
extensions of the cones do not change the states identified,
but the results presented here use depth 3 for both future and
past light cones. �Rule 41, not shown for reasons of space,
required a past depth of 5 in order to reach convergence.�

While both our techniques make it easy to identify objects
like particles, even when they were previously hard to detect,
they are very different filters, not just in their definition but
also in their results. This can immediately be seen from the
correlation coefficients6 of the sensitivity and complexity
fields—for rule 110, for instance, the correlation is a negli-
gible 0.014.

More abstractly, statistical complexity is a local quantity
that is calculated using a global object: namely, the probabil-
ity distribution over causal states. Its accurate estimation thus
needs a quite large number of cells, since, lacking an analyti-

5This statement must be qualified by a recognition that we must
supply the filter with enough data for it to find the right states. The
learning rate of the state reconstruction algorithm is an important
topic, beyond the scope of this paper.

6The correlation coefficient of statistics, �xy = �
XY�− 
X�
Y�� /
�X�Y, is a dimensionless counterpart to the correlation function of
statistical physics, CXY = 
XY�− 
X�
Y�, normalized so that its value
lies between −1 and +1 and is zero when X and Y are linearly
unrelated.

FIG. 8. Algorithm for grouping past light cones into estimated
states.
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cal form for that distribution, the latter must itself be esti-
mated. A further consequence is that the separation between
particles and other structures and the background tends to
become cleaner over time, as the domains grow and the den-
sity of particles decays, suppressing the complexity of the
former and raising that of the later. �This may be clearly seen
in Fig. 4�c�.� Identification of structures from the complexity
field is thus best undertaken after a �hopefully short� tran-
sient regime has passed, during which the local sensitivity
filter may be more useful. It is not, of course, necessary for
the system to have reached a stationary regime in order to
use the local complexity filter.

IV. RESULTS ON CYCLIC CELLULAR AUTOMATA

In this section we compare and contrast local sensitivity
and statistical complexity with a more traditional order pa-
rameter approach in a spiral-forming CA model of an excit-
able medium. By applying all three analyses to the same �2
+1�D CA, we will clarify the specific structural details em-
phasized by each method and bring out the advantages of
automatic filtering over approaches where the details must be
put in by hand.

Our model system in this section is the cyclic cellular
automata on a square lattice, which have been studied in
considerable detail in the literature on spatial stochastic pro-
cesses �51,52�. In the general case, there are � colors, num-
bered from 0 to �−1. A cell of color k changes its color only
if at least T of its neighbors are of color k+1 mod �, in
which case it assumes that color. In this paper, we confine
ourselves to the special case of range 1 neighborhoods, �
=4, and T=2. The behavior of the system, started from uni-
form random initial conditions, is illustrated in Fig. 2. In
�38�, we demonstrated the ability of statistical complexity to
quantify the extent to which the CA self-organizes and the
effect of changing parameter values on the degree of self-
organization. Here, however, we are more interested in the
patterns formed than in whether significant pattern formation
is taking place, so we deal only with the most strongly self-
organizing variant.

A. Order parameter and effective free energy

While, as remarked, cyclic CA have been extensively
studied as models of excitable media, they have not �to the
best of our knowledge� hitherto been examined with the tools
of the order parameter approach. To better highlight the dis-
tinctive characteristics of the automatic filtering methods we
propose, we first identify an order parameter and effective
free energy for the present version of CCA. Our free energy
will be a functional of the configuration field alone and is
most appropriate for the long-run stationary distribution,
rather than the initial transient stages, when the system is far
from statistical equilibrium. Accordingly, we suppress time
as an argument to the configuration field in what follows.

As noted, with these parameter settings, the CA configu-
ration field forms rotating spiral waves, which grow to en-
gulf the entire lattice, with disordered domain walls at the
boundaries between competing spiral cores. �See Fig. 9.� The

mechanisms by which spirals form and grow are fairly well
understood, and topological arguments �52� pick out the key
role of both the conservation of winding number and of the
spiral cores in this process. Accordingly we consider CCA as
a kind of discretized XY model, similar to a clock model ��4�,
Sec. 3.6.3�,7 and, as in such models generally, the appropriate
order parameter has two components �4�. Here the crucial
observation is that the ground state consists of plane waves,
with stripes of cells of constant color extending perpendicu-
lar to the direction of propagation of the wave. The order
parameter is the local normalized wave vector

��x,y� = �̄x�x,y�x̂ + �̄y�x,y�ŷ ,

defined such that it takes one of four values �= �1/
�2��±1, ±1� in each of the four domains surrounding a spiral
core. The exact definition of the wave vector in terms of the
states of the CCA configuration field is given in Appendix B.
This wave vector can be used to define a phase for the spiral
wave at each lattice site:

��x,y� = tan−1�̄y�x,y�

�̄x�x,y�
.

The local free energy is then calculated as the discretized
version of

F�x,y� = ����x,y��2. �4�

We show the free energy of the CA configuration field in Fig.
10. Note the increased free energy caused by topological
defects such as the domain walls and spiral cores.

7A class of cellular automata very similar to CCA are treated as
antiferromagnetic Potts models in �53�. We experimented with such
an order parameter, but the results were poor.

FIG. 9. �Color online� A typical configuration of the spiral-
forming CCA cyclic cellular automaton in the asymptotic regime
�t=200�, illustrating the presence of coherent structures �rotating
spiral waves� dominating the lattice.
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B. Local sensitivity and statistical complexity for CCA

Filtering by sensitivity and complexity, which we demon-
strated above for elementary cellular automata, works with-
out modification on cyclic CA. As might be expected, the
two filters reveal different, but compatible, aspects of the
system.

Figure 11 shows the local sensitivity field for the same
configuration as in Fig. 9, with a one-cell perturbation range
�p=0�. Figure 12, on a smaller field, shows that with p=1 we
get qualitatively similar results. The spiral cores are easily
spotted in both figures, demonstrating that they are autono-
mous objects. There is no clear difference between spiral
angles �the horizontal and vertical lines� and spiral domains.
Spiral boundaries are white �lowest sensitivity�, because any
perturbation here will be quickly erased under the pressure of

the radiating spiral cores �cf. �54��. Calculating local sensi-
tivity for �2+1�D automata is very slow: each cell has 8
neighbors and there are 4 states, which makes 49−1 possible
perturbations. While sampling a random subset of all pos-
sible perturbations would be faster, the resulting approxima-
tion error would have to be carefully determined.

We show the CCA field filtered with respect to statistical
complexity in Fig. 13. Comparison with Fig. 10 shows that
causal states and order parameter analysis yield the same
information. The spiral cores are still among the most com-
plex areas. Here spiral boundaries are also complex: under
statistical complexity filtering, this is because some predic-
tion is possible, but requires much information; under free
energy analysis, this is due to high phase differences.

C. Comparison of free energy, sensitivity, and complexity

The three methods described here—the free energy, the
local sensitivity, and the statistical complexity—all uncover

FIG. 10. Free energy per site of the CCA configuration field
given in Fig. 9. Darker cells have higher energy values. Note the
increased free energy at the topological defects—e.g., the spiral
cores and domain walls.

FIG. 11. Local sensitivity �p=0, f =5� for the cyclic cellular
automaton, using the CCA configuration field of Fig. 9

FIG. 12. �Color online� Local sensitivity �a� for the cyclic cel-
lular automaton, calculated with p=1, f =1, and corresponding con-
figuration �b�.

FIG. 13. Local statistical complexity of the CCA configuration
field in Fig. 9, calculated with depth-1 light cones. Darker cells
have higher values for the field. This figure should be compared to
both Figs. 10 and 11. Note that free energy and statistical complex-
ity are strongly correlated, while local sensitivity and statistical
complexity are not because they emphasize different aspects of the
coherent structure.
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significant structures in the spatiotemporal dynamics of the
CA. However, the methods are not equivalent and emphasize
different aspects of those structures, as one might expect of
different filters.

Qualitatively, we can see the difference in the order in
which different features are ranked. For sensitivity, the order-
ing is particles �spiral cores�, domains, and then domain
walls last. For both complexity and free energy, the order is
by contrast domain walls, particles, and domains. A quanti-
tative calculation of the correlation coefficients between the
different filtered fields confirms this qualitative impression.
The most strongly correlated—as one might expect by com-
paring Fig. 10 with Fig. 13—are the statistical complexity
and the free energy, �=0.690; we discuss the roots of this
strong correlation below. The complexity and the sensitivity,
however, are almost completely uncorrelated, just as we ob-
served in the case of rule 110—the correlation coefficient
calculated from sample data, �=−0.006, is not materially
different from 0. Unsurprisingly, there is also no important
correlation between the sensitivity and free energy ��=
−0.008�. Despite the fact that sensitivity and complexity are
nearly orthogonal, plotting complexity as a function of sen-
sitivity �not shown� reveals an interesting relationship: as
sensitivity increases, the minimum value of complexity rises,
though the converse is not true �minimally sensitive points
are found at all values of complexity�.

Sensitivity looks for regions that are unstable to perturba-
tion; because of this instability, prediction requires very pre-
cise discriminations among histories. Moreover, localized
unstable regions are presumably rare and the corresponding
states uncommon. �Recall that the complexity is both H�S�
and I�S ;X−�.� Thus the spiral cores are rare, sensitive, and
complex. On the other hand, uncommon, complex structures
need not be unstable. Domain walls, for instance, are com-
paratively rare and require considerable historical informa-
tion for their prediction, essentially because they are regions
where the evolution of the phase is hard to determine; this in
turns means that their causal states need more bits to specify.
They are, however, very stable, because they have consider-
able spatial extent, and to destroy or move a wall implies
changing the domains on either side. The domains them-
selves, while only minimally complex, are more sensitive
than the domain walls, because perturbations there can create
localized defects.

The relationship between free energy and complexity,
while strong and at first sight clear, is actually a bit tricky.
The easy, but flawed, argument for why effective free energy
and complexity should be correlated runs as follows. The
effective free energy relies on the assumption that the micro-
scopic dynamics tend to create ordered regions, where “or-
dered” is understood in the sense given by the order param-
eter. All departures from the ordered state are unlikely, and
large departures are exponentially unlikely. �This is not tau-
tologically true, but when it is, we can define an effective
free energy.� These departures take the form of topological
defects, like spiral cores and domain walls, which pay an
energetic penalty. The exact size of this penalty and the re-
sulting rarity of these features will depend on the details of
the microscopic dynamics. But precisely because they are
rare, the causal states corresponding to them should be rare
too and so have high local complexity.

The flaw is that the causal state at a point is a function of
the configuration in its past light cone, while the order pa-
rameter and the free energy are functions of the immediate
neighborhood configuration. Since the two filters use differ-
ent inputs, their strong correlation is not trivial. However,
under fairly general conditions, the local causal states form a
Markov random field �37� and the Gibbs-Markov theorem
tells us that a random field is Markovian if and only if there
is an additive effective free energy which gives the probabil-
ity of configurations �55�. Conversely, it can be argued that a
complete set of thermodynamic macrovariables should be
equivalent to the causal state of the system and should be
Markovian in time, so that they can be calculated entirely
from the present configuration �43�. Thus, there should, in
fact, be a relationship between the complexity and the free
energy if we have identified the proper order parameter; the
strong correlation we find between the two fields suggests
that we have done so. The fact that the correlation, while
strong, is not perfect could be either due to our definition of
the order parameter being slightly off or due to finite-sample
errors in the identification of the causal states.8

V. CONCLUSIONS

We have introduced two complementary filtering methods
for spatially extended dynamical systems. Local sensitivity
calculates the degree to which local perturbations alter the
system and picks out autonomous features. Local statistical
complexity calculates the amount of historical information
required for optimal prediction and identifies the most highly
organized features. We emphasize that “organized” is not
equivalent to ordered, because the latter corresponds to low
entropy which is not the same as high complexity or organi-
zation �38�. A regular lattice is highly ordered, but not very
organized. On the other hand, high complexity is not equiva-
lent to high entropy. A random field has high entropy but low
complexity. Complexity, as we said earlier, lies between or-
der and randomness and is a reflection of the probabilistic
properties of the system. In contrast, sensitivity is a measure
of the system’s dynamical properties. The two are linked
through ergodic theory, but they remain distinct. Both sensi-
tivity and complexity pick out spatiotemporal coherent struc-
tures, and the structures they identify match those known
from previous, more ad hoc approaches, whether based on
regular languages �as in ECA� or order parameters and topo-
logical considerations �as in CCA�. In no case, however, is
prior knowledge about the system or its coherent structures
used in constructing our filters; at most, we have tuned cal-
culational parameters in a way akin to adjusting a micro-
scope until the image comes into focus. Ideally, one would
use both sensitivity and complexity filtering, because they
provide distinct kinds of information about the system, but

8Smith �64� has pointed out that this argument suggests a relation-
ship between the time depth needed to identify the causal states and
the spatial range needed to calculate the free energy. However, pin-
ning down that relationship would require careful treatment of
many mathematical issues regarding sofic shifts, long-range corre-
lations in Markovian fields, etc., beyond the scope of this paper.
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we suspect complexity will be much easier to calculate from
empirical data since it only requires observation and not per-
turbation.

Many theoretical and mathematical questions present
themselves about both filtering methods. We have mentioned
some in passing; here, we wish to highlight just a few. On the
local sensitivity method: What is the exact relationship be-
tween the perturbation range p and the spatial scale of iden-
tified structures? How much error would be introduced by
averaging over a random subset of perturbations, rather than
an exhaustive enumeration? Can one identify a typical
lifespan for a perturbation, after which it is erased by its
surroundings, and if so is this lifespan related to f? �This last
is presumably related to dynamical mixing properties.� On
the local complexity method: What quantitative factors relate
the volume of data available to the error in our estimates of
the causal states and so of the complexity? Can we use
causal states to give algebraic and automata-theoretic defini-
tions of “domain” and “particle,” like those in the 1D case,
without entangling ourselves in the difficulties of higher-
dimensional languages? �Cf. �36�, Sec. 10.5.� When we do
have partial knowledge of the correct pattern basis, can we
use this to hasten the identification of the local causal states?
Perhaps most ambitiously, could one reverse engineer a good
order parameter from the local causal state field and its tran-
sition structure?

As very large, high-dimensional data sets become increas-
ingly common and important in science, human perception
will become increasingly inadequate to the task of identify-
ing appropriate patterns �56,57�. It is desirable, therefore, to
move towards more automatic filtering methods and auto-
matic ways of detecting coherent objects. Because our filter-
ing methods do not presuppose any prior knowledge or re-
quire human insight about what the right structures are, they
should work generically, across systems of highly varying
nature and dynamics. This is a hypothesis rather than a theo-
rem, but it can be tested simply by applying our filtering
methods to a wide range of systems with known coherent
structures—and to others where the appropriate structures
are not known. In the latter cases, the test of our methods
will be whether the structures they identify can be used to
frame interesting and insightful higher-level models about
the dynamics and functions of the systems involved �cf.
�43,58��.
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APPENDIX A: ATTEMPTS TO ADAPT LYAPUNOV
EXPONENTS TO CELLULAR AUTOMATA

There have been at least three attempts to define
Lyapunov exponents for cellular automata. We review them
in order of priority, concluding that none of them is alto-
gether suited to the aims of this paper. All are based on
measuring the rate at which small perturbations cause a di-
vergence from the original trajectory.

Shereshevsky �59� defines a Lyapunov exponent for one-
dimensional cellular automata as the velocity of propagation
of the edge of the difference plume. More exactly, he defines
two Lyapunov exponents for the velocities of the left and
right edges. By assuming that an invariant measure over con-
figurations exists and has certain properties, he is able to
show that these velocities have reasonable long-time limits.
�Tisseur �60� shows that the limit exists with somewhat
weaker conditions on the invariant measure.� To show that
the limit is uniform over the lattice, he invokes a further
spatial ergodicity property.

We, of course, would like things not to be uniform, so the
fact that we do not have measures which are so nicely er-
godic and stationary should not trouble us. But this definition
allows a cell which only makes a difference to one other cell
in the future to count as highly influential, provided that said
cell moves very rapidly. �Consider the shift rule 170 “copy
your neighbor to your left.”� Looking at the area of the dif-
ference plume �i.e., the number of differing cells between the
original configuration and the perturbed configuration� seems
far more reasonable.

Bagnoli et al. �61� come closest to the way we define
local sensitivity in Sec. II by looking at the total number of
“defects,” here meaning the number of cells which are dif-
ferent between the original and perturbed configurations.
They proceed as follows. They perturb a single site of the
lattice and iterate forward one time step, so that the the dif-
ference plume now embraces m sites. They then create m
copies of the lattice, each identical to the time-evolved un-
perturbed configuration, except at one of the m sites in the
difference plume. They then repeat this procedure, accumu-
lating more and more copies of the lattice, each of which
differs from the unperturbed trajectory only at a single site.
Suppose the initial perturbation was applied at cell x�0 and
time t0. Then for each site x� and time t� t0, the number of
copies of the system which have a defect at x� at time t is
Nx�0,t0

�x� , t� and Nx�0,t0
�t�=�xN�x� , t�. Nx�0,t0

�t� can grow expo-
nentially, and Bagnoli et al. define the local Lyapunov expo-
nent to be that exponential growth rate.

This is far from anything that could be called a Lyapunov
exponent in the strict sense of the term. Furthermore, to
avoid the extremely involved �exponential� calculation
which their definition implies, they make use of a kind of
derivative, as in the continuous-system definition of the
Lyapunov exponent. But these derivatives are only defined
for Boolean-valued rules, which makes them useless for, e.g.,
cyclic cellular automata. The direct calculation could be
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somewhat simplified for deterministic cellular automata by
means of dynamic programming, but it would still be a hard
calculation to obtain a number whose physical significance is
unclear.

Finally, Urías et al. �62� define a quantity which is a
Lyapunov exponent �and does not require binary values�, but
only under a very specific metric, with no clear physical
interpretation; it is not clear how, if at all, their metric could
be extended to higher-dimensional cellular automata. The ul-
timate result they get is that the Lyapunov exponent is just
the maximum velocity at which the envelope of the differ-
ence region spreads—taking the maximum over all possible
semi-infinite �not single-point� perturbations.

In this paper we wished not to measure a single Lyapunov
exponent for the entire system, but rather the local �in both
space and time� effects of perturbations. This allowed us to
determine the degree to which different local structures of
the CA are autonomous.

APPENDIX B: ORDER PARAMETER AND FREE ENERGY
FOR SPIRAL-FORMING CYCLIC CELLULAR

AUTOMATA

A classic method of describing the equilibrium ordered
phases of a system is to define an appropriate order param-
eter for each phase and an associated free energy determined
from symmetry considerations �3,4�. In this Appendix we
will perform this analysis for the spiral cellular automaton in
its equilibrium state. By “equilibrium” we mean the cellular
automaton’s long-time behavior after the domain walls and
spiral cores have stabilized. The transient period of the cel-
lular automaton corresponds to the phase transition which is
not described by the order parameter formalism. Examina-
tion of the cellular automaton field �e.g., Fig. 9� reveals that,
while it certain possesses order, it is also highly frustrated
and exhibits many topological defects, most notably the vor-
tices at the spiral centers and the domain walls between ad-
jacent spirals. However the order parameter is defined, we
expect the free energy to increase at these defects.

We begin by defining an appropriate order parameter on
the discrete lattice. We take our cue from the fact that for a
continuous field, the spirals would consist of concentric rings
possessing two-dimensional rotational symmetry. We there-
fore construct a discretized XY model order parameter and
free energy. In the XY model the Ginsburg-Landau free en-
ergy density at a given lattice site is

F�x,y� = †���x,y�‡2, �B1�

where  is a positive constant which we arbitrarily set to 1
and henceforth ignore. � is a localized phase defined at each
lattice site. In practice we calculate the Laplacian using each
lattice site’s nearest neighbors:

F�x,y� =
1

4
†��x + 1,y� − ��x,y�‡2

+ †��x,y� − ��x − 1,y�‡2

+ †��x,y + 1� − ��x,y�‡2

+ †��x,y� − ��x,y − 1�‡2� . �B2�

� is defined in terms of the states of the configuration field
�� 0,1 ,2 ,3�. Noting that the spiral cellular automaton field
consists mainly of plane waves cycling through the four col-
ors and traveling mainly along the diagonals, although at
times along the x and y axes, it seems reasonable to define
the spiral cellular automaton phase � as a function of the
direction in which the wave is traveling. We define a normal-
ized two-component wave vector at each lattice site �x ,y�,

��x,y� =
1

��x
2 + �y

2
†�x�x,y�x̂ + �y�x,y�ŷ‡ = ��̄x,�̄y� ,

�B3�

where �̄x and �̄y are the components of the normalized vec-
tor and the unnormalized components �x and �y are defined
as follows:

�x�x,y� = �
i=±1

g„��x + i,y�,��x,y�…

+
1

2 �
i=±1,j=±1

g„��x + i,y + j�,��x,y�… , �B4�

�y�x,y� = �
i=±1

g„��x,y + i�,��x,y�…

+
1

2 �
i=±1,j=±1

g„��x + i,y + j�,��x,y�… . �B5�

Note that the first sum is over nearest neighbors in the x �y�
direction and the second sum is over all next nearest neigh-
bors. The factor 1 /2 comes from the corresponding 1/2 in
the definition of the order parameter. The function g is de-
fined as

g��1,�2� = + 1 if �1 = �2 + 1

= − 1 if �1 = �2 − 1

= 0 otherwise. �B6�

It is to be understood that the above definition of g involves
addition and subtraction modulo 4.

The phase � at a given lattice site is defined simply as

� = tan−1�̄y

�̄x

. �B7�

Thus we see that in the upper right quadrant of a spiral, �
= �1/�2,1 /�2� and �=� /4, whereas in the upper left quad-
rant �= �1/�2,−1/�2� and �=3� /4. Thus there is a phase
gradient along the boundary between these two quadrants of
the spiral and an increase of free energy here. This can be
seen in Fig. 10. �The localization of the free energy increase
to the boundary between quadrants is, of course, an artifact
of the discretized spatial lattice. In the continuum limit, the
gradient energy would be distributed evenly around the cen-
tral vortex.� The other locations where one expects to see
increased free energy are in the vortex cores and at the
boundaries between spirals. Our free energy captures both of
these effects �Fig. 10�.
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